
C memory model
Lecture 03.02

Outline

• Memory of a single process

• Globals and stack

• Heap for dynamic allocation

Buffer

Code

Constants

Globals

HEAP

Stack

A. Fun

int fun (char a, char b) {

a++;

b++;

return b;

}

char a=’a’; //value 97

char b=’b’;

int main () {

char c = (char) fun (a, b);

printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

}

Buffer

Code

Constants

Globals

HEAP

Stack

A. Fun

int fun (char a, char b) {

a++;

b++;

return b;

}

char a=’a’; //value 97

char b=’b’;

int main () {

char c = (char) fun (a, b);

printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

}

Buffer

Code

Constants

Globals

HEAP

Stack

a=97
b=98

A. Fun

int fun (char a, char b) {

a++;

b++;

return b;

}

char a=’a’; //value 97

char b=’b’;

int main () {

char c = (char) fun (a, b);

printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

}

Buffer

Code

Constants

Globals

HEAP

Stack

c=?

a=97
b=98

A. Fun

int fun (char a, char b) {

a++;

b++;

return b;

}

char a=’a’; //value 97

char b=’b’;

int main () {

char c = (char) fun (a, b);

printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

}

Buffer

Code

Constants

Globals

HEAP

Stacka=97
b=98
c=?

a=97
b=98

A. Fun

int fun (char a, char b) {

a++;

b++;

return b;

}

char a=’a’; //value 97

char b=’b’;

int main () {

char c = (char) fun (a, b);

printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

}

Buffer

Code

Constants

Globals

HEAP

Stacka=98
b=99
c=?

a=97
b=98

A. Fun

int fun (char a, char b) {

a++;

b++;

return b;

}

char a=’a’; //value 97

char b=’b’;

int main () {

char c = (char) fun (a, b);

printf (“%c %c %c\n”, a, b, c);

//what is printed by the way?

}

Buffer

Code

Constants

Globals

HEAP

Stack

c=99

a=97
b=98

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

str=0x222

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

str=0x222
ip = ?

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

str=0x222
ip = ?

a = 0x222

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

str=0x222
ip = ?

a = 0x12

x x x x x

0x12

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

str=0x222
ip = ?

a = 0x12

a b 0 x x

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

str=0x222
ip = ?

a = 0x12

a b 0 x x

1 2

Result, same as 0x111

0x12

B. More fun
int * more_fun (char *a) {

a = malloc (5);

*a = ‘a’;

*(a+1) = ‘b’;

*(a+2) = 0;

int result[] = {1,2};

return result;

}

int main () {

char *str;

int *ip = more_fun (str);

printf (“%d %s\n”, *ip, str);

}

Buffer

Code

Constants

Globals

HEAP

Stack

str=0x222
ip = 0x111

a b 0 x x

0x12

Memory memorizer

• Each process receives an address space, and allocates
memory segments for different purposes

• The smallest address (0) is reserved to represent NULL

• Code segment stores program code (we can also have
pointers to places in code – function pointers)

• Constants stores all the constants. This memory is read-
only

• Globals stores global variables – variables visible to all
functions

• Stack stores variables of a currently executing function

• Heap is reserved for dynamic memory allocation

Memory memorizer

• Constants stores all the constants. This memory is read-only

• Globals stores global variables – variables visible to all
functions

• Stack stores variables of a currently executing function

• Heap is reserved for dynamic memory allocation

Stack variables (automatic
variables, temporary variables)

int factorial(int n) {

if(n <= 1) {

return 1;

} else {

return n * factorial(n - 1);

}

}

int main () {

int n = 3;

int f = factorial (n);

}

STACK

main
n: 3

factorial
n: 3

factorial
n: 2

factorial
n: 1

Stack frames

All n’s are
different
variables and
have their own
address

Stack variables, automatic
variables, temporary variables

int factorial(int n) {

if(n <= 1) {

return 1;

} else {

return n * factorial(n - 1);

}

}

int main () {

int n = 3;

int f = factorial (n);

}

STACK

main
n: 3

factorial
n: 3

factorial
n: 2

factorial
n: 1

Stack frames

1

This n does not
exist after
function returns

int depth = 0;

int factorial(int n) {

depth++;

if(n <= 1)

return 1;

else

return n * factorial(n - 1);

}

int main () {

int n = 3;

int f = factorial (n);

printf (“%d!=%d recursion depth=%d\n”, n,f,depth);

}

GLOBALS

Global variables

variable depth exists
in the same address
space through the

entire program

Static variables

void print_plus () {

int a = 10;

static int sa = 10;

a += 5;

sa += 5;

printf("a = %d, sa = %d\n", a, sa);

}

int main() {

int i;

for (i = 0; i < 10; ++i)

print_plus();

}

A static variable inside a
function keeps its value
between invocations, but
unlike global variable is
invisible to other functions

GLOBALS

Again: array is not exactly a
pointer
• An array name is a constant address, while a pointer is a

variable:

int x[10], *px;

px = x; px++; /** valid **/

x = px; x++; /** invalid, cannot assign a new value **/

Array vs. pointer - allocation

• int x[10], *px;

px = x; px++; /** valid **/

x = px; x++; /** invalid, cannot assign a new value **/

• Defining the pointer only allocates memory space for the
address, not for any array elements, and the pointer does
not point to anything meaningful.

• Defining an array (x[10]) gives a pointer to a specific place in
memory and allocates enough space to hold the array
elements.

Stack storage

• Most of the memory we used so far has been in the stack.

• The stack is the area of memory that’s used for local
variables.

• Each piece of data is stored in a variable, and each variable
disappears as soon as you leave its function.

Example: returning an array

• You can't say:

int *f() {

int a[10];

...

return(a);

}

• because that 'a' array is deallocated as the function
returns.

Dynamic storage

• We not always know how much memory we need in
advance

• We need to be able to demand and get the memory
dynamically, at the point when we need it

• Dynamic memory is allocated on the heap

HEAP

First, get your memory with
malloc()
• Ask for a large storage locker for the

data: malloc()

• Tell the malloc() function exactly how
many bytes of memory you need,
and it asks the operating system to
set that much memory aside in the
heap

• The malloc() function then returns a
pointer to the new heap space, a bit
like getting a key to the locker

Give the memory back when
you’re done

• With the stack, you didn’t need to worry about returning

memory; it all happens automatically: every time you leave a

function, the local storage is freed

• The heap is different. Once you’ve asked for space on the

heap, it will never be available for anything else until you

explicitly free it.

• There’s only so much heap memory available, so if your code

keeps asking for more and more heap space, your program

will start to develop memory leaks

Free memory by calling the free()
function
• The malloc() function allocates space and gives you a

pointer to it

• You’ll need to use this pointer to access the data and then,
when you’re finished with the storage, you need to release
the memory using the free() function.

• It’s a bit like handing your locker key back to the attendant
so that the locker can be reused.

Thanks for the
storage. I’m done
with it now

free for each malloc

• Every time some part of your code requests heap storage
with the malloc() function, there should be some other part
of your code that hands the storage back with the free()
function.

• When your program stops running, all of its heap storage
will be released automatically, but it’s always good practice
to explicitly call free() on every piece of dynamic memory
you’ve created.

• Return a pointer to malloc'd memory if you want to return an
array:

int *f() {

int *a;

if ((a = malloc(10 * sizeof(int))) == NULL)

...

...

return(a);

}

• Because the malloc'd memory persists until free() is called on
the pointer - its existence is not tied to the duration of the
execution of the function.

Array as a return value

int *f() {

int a[10];

...

return(a);

}

Summary: heap memory

• Heap memory provides greater control for the programmer
— the blocks of memory can be requested in any size, and
they remain allocated until they are deallocated explicitly.

• Heap memory can be passed back to the caller function
since it is not deallocated on exit

• Heap memory is allocated at run time

• malloc() and free()

